
TORQUE Y CONVERSIÓN DE UNIDADES

TORQUE EN UNA LLAVE = FUERZA X BRAZO DE PALANCA

¿Qué es el torque?

Es una medida que cuantifica la fuerza ejercida sobre un objeto, para causar que este último gire. Existen dos formas para aumentar el torque:

- Incrementar la fuerza que se ejerce sobre la pieza que queremos hacer rotar.
- 2 Alargar el brazo de la palanca.

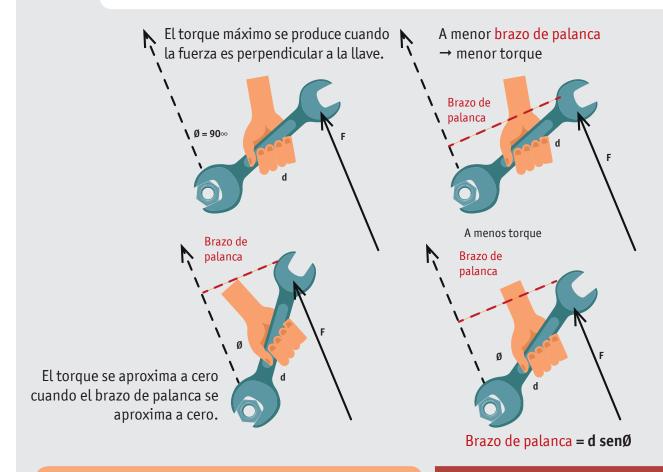
El torque entonces se define con la fórmula **T** = **F** x d x senØ∞ ; De qué factores depende el torque?

- Distancia al punto de giro: d
- Magnitud de la fuerza: F
- Ángulo de aplicación de la fuerza: Ø

(Si $\emptyset = 90^{\circ}$ máximo torque. Si $\emptyset = 0^{\circ}$, no hay torque

Existen dos formas para aumentar el torque: Incrementar la fuerza (F) que se ejerce sobre la pieza que queremos hacer rotar. Alargar el brazo de la palanca (d)

TORQUE Y CONVERSIÓN DE UNIDADES



TORQUE EN UNA LLAVE = FUERZA X BRAZO DE PALANCA

¿Qué es el torque?

Es una medida que cuantifica la fuerza ejercida sobre un objeto, para causar que este último gire. Existen dos formas para aumentar el torque.:

- Incrementar la fuerza que se ejerce sobre la pieza que queremos hacer rotar.
- 2 Alargar el brazo de la palanca.

El torque entonces se define con la fórmula $\mathbf{T} = \mathbf{F} \mathbf{x} \, \mathbf{d} \mathbf{x} \, \mathbf{sen} \emptyset \infty$ ¿De qué factores depende el torque?

- Distancia al punto de giro: d
- Magnitud de la fuerza: F
- Ángulo de aplicación de la fuerza: Ø
 (Si Ø = 90° máximo torque. Si Ø = 0°, no hay torque

Existen dos formas para aumentar el torque:

- Incrementar la fuerza (F) que se ejerce sobre la pieza que queremos hacer rotar.
- Alargar el brazo de la palanca (d)

